• Our new home

    from summer 2021.

  • Hunting for microbes since 2003

  • We seek to understand

    the role of microorganisms in Earth's nutrient cycles

    and as symbionts of other organisms

  • Cycling of carbon, nitrogen and sulfur

    affect the health of our planet

  • The human microbiome -

    Our own social network of microbial friends

  • Ancient invaders -

    Bacterial symbionts of amoebae

    and the evolution of the intracellular lifestyle

  • Marine symbioses:

    Listening in on conversations

    between animals and the microbes they can't live without

  • Single cell techniques offer new insights

    into the ecology of microbes

  • Doctoral School in Microbiology and Environmental Sciences

  • PhD program in Microbial Symbioses

    A special FWF funded track in our doctoral school

Dome News

Latest publications

Cyanate is a low abundance but actively cycled nitrogen compound in soil

Cyanate can serve as a nitrogen and/or carbon source for different microorganisms and as an energy source for autotrophic ammonia oxidizers. However, the extent of cyanate availability and utilisation in terrestrial ecosystems and its role in biogeochemical cycles is poorly known. Here we analyse cyanate concentrations in soils across a range of soil types, land management practices and climates. Soil cyanate concentrations were three orders of magnitude lower than ammonium or nitrate. We determined cyanate consumption in a grassland and rice paddy soil using stable isotope tracer experiments. We find that cyanate turnover was rapid and dominated by biotic processes. We estimated that in-situ cyanate production rates were similar to those associated with urea fertilizer decomposition, a major source of cyanate in the environment. We provide evidence that cyanate is actively turned over in soils and represents a small but continuous nitrogen/energy source for soil microbes.

Mooshammer M, Wanek W, Jones SH, Richter A, Wagner M
2021 - Communications Earth & Environment, in press

Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria

The discovery of anaerobic ammonia-oxidizing bacteria (Anammox) and, more recently, aerobic bacteria common in many natural and engineered systems that oxidize ammonia completely to nitrate (Comammox) have significantly altered our understanding of the global nitrogen cycle. A high affinity for ammonia (Km(app),NH3 ≈ 63nM) and oxygen place Comammox Nitrospira inopinata, the first described isolate, in the same trophic category as organisms such as some ammonia-oxidizing archaea. However, N. inopinata has a relatively low affinity for nitrite (Km,NO2 ≈ 449.2μM) suggesting it would be less competitive for nitrite than other nitrite-consuming aerobes and anaerobes. We examined the ecological relevance of the disparate substrate affinities by coupling it with the Anammox bacterium Candidatus Brocadia anammoxidans. Synthetic communities of the two were established in hydrogel granules in which Comammox grew in the aerobic outer layer to provide Anammox with nitrite in the inner anoxic core to form dinitrogen gas. This spatial organization was confirmed with FISH imaging, supporting a mutualistic or commensal relationship. The functional significance of interspecies spatial organization was informed by the hydrogel encapsulation format, broadening our limited understanding of the interplay between these two species. The resulting low nitrate formation and the competitiveness of Comammox over other aerobic ammonia- and nitrite-oxidizers sets this ecological cooperation apart and points to potential biotechnological applications. Since nitrate is an undesirable product of wastewater treatment effluents, the Comammox-Anammox symbiosis may be of economic and ecological importance to reduce nitrogen contamination of receiving waters.

Gottshall EY, Bryson SJ, Cogert KI, Landreau M, Sedlacek CJ, Stahl DA, Daims H, Winkler M
2021 - Water Res, 202: 117426

Microaerobic lifestyle at nanomolar O2 concentrations mediated by low-affinity terminal oxidases in abundant soil bacteria.

High-affinity terminal oxidases (TOs) are believed to permit microbial respiration at low oxygen (O2) levels. Genes encoding such oxidases are widespread and their existence in microbial genomes are taken as an indicator for microaerobic respiration. We combined respiratory kinetics determined via highly sensitive optical trace O2 sensors, genomics and transcriptomics to test the hypothesis that high-affinity TOs are a prerequisite to respire micro- and nanooxic concentrations of O2 in environmentally relevant, model soil organisms – acidobacteria. Members of the Acidobacteria harbor branched respiratory chains terminating in low- (caa3-type cytochrome c oxidases) as well as high-affinity (cbb3-type cytochrome c oxidases and/or bd-type quinol oxidases) TOs, potentially enabling them to cope with varying O2 concentrations. The measured Km(app) values for O2 of selected strains ranged from 37–288 nmol O2 L-1, comparable to values previously assigned to low-affinity TOs. Surprisingly, we could not detect expression of the conventional high-affinity TO (cbb3-type) at micro- and nano-molar O2 concentrations, but of low-affinity TOs. To the best of our knowledge, this is the first observation of microaerobic respiration imparted by low-affinity TOs at O2 concentrations as low as 1 nanomolar. This challenges the standing hypothesis that a microaerobic lifestyle is exclusively imparted by the presence of high-affinity TOs. As low-affinity TOs are more efficient at generating ATP than high-affinity TOs, their utilization could provide a great benefit, even at low-nanomolar O2 levels. Our findings highlight energy conservation strategies that could promote the success of Acidobacteria in soil but might also be important for yet unrevealed microorganisms.

Trojan D, Garcia-Robledo E, Meier DV, Hausmann B, Revsbech NP, Eichorst SA, Woebken D
2021 - mSystems, e0025021

Lecture series

Making chemistry visible in complex biological systems

Klaus Koren
Aarhus University, Demark
22.04.2021
12:00 h
Webinar

Exploring viral diversity from the global oceans to the human gut

Ann Gregory
KU Leuven, Belgium
15.04.2021
12:00 h
Webinar