• Hunting for microbes since 2003

  • We seek to understand

    the role of microorganisms in Earth's nutrient cycles

    and as symbionts of other organisms

  • Cycling of carbon, nitrogen and sulfur

    affect the health of our planet

  • The human microbiome -

    Our own social network of microbial friends

  • Ancient invaders -

    Bacterial symbionts of amoebae

    and the evolution of the intracellular lifestyle

  • Marine symbioses:

    Listening in on conversations

    between animals and the microbes they can't live without

  • Single cell techniques offer new insights

    into the ecology of microbes

  • Apply for the DOME International PhD/PostDoc program

Dome News

Latest publications

Transcriptomic response of Nitrosomonas europaea transitioned from ammonia- to oxygen-limited steady-state growth

Ammonia-oxidizing microorganisms perform the first step of nitrification, the oxidation of ammonia to nitrite. The bacterium Nitrosomonas europaea is the best characterized ammonia oxidizer to date. Exposure to hypoxic conditions has a profound effect on the physiology of N. europaea, e.g. by inducing nitrifier denitrification, resulting in increased nitric and nitrous oxide production. This metabolic shift is of major significance in agricultural soils, as it contributes to fertilizer loss and global climate change. Previous studies investigating the effect of oxygen limitation on N. europaea have focused on the transcriptional regulation of genes involved in nitrification and nitrifier denitrification. Here, we combine steady-state cultivation with whole genome transcriptomics to investigate the overall effect of oxygen limitation on N. europaea. Under oxygen-limited conditions, growth yield was reduced and ammonia to nitrite conversion was not stoichiometric, suggesting the production of nitrogenous gases. However, the transcription of the principal nitric oxide reductase (cNOR) did not change significantly during oxygen-limited growth, while the transcription of the nitrite reductase-encoding gene (nirK) was significantly lower. In contrast, both heme-copper containing cytochrome c oxidases encoded by N. europaea were upregulated during oxygen-limited growth. Particularly striking was the significant increase in transcription of the B-type heme-copper oxidase, proposed to function as a nitric oxide reductase (sNOR) in ammonia-oxidizing bacteria. In the context of previous physiological studies, as well as the evolutionary placement of N. europaea’s sNOR with regards to other heme-copper oxidases, these results suggest sNOR may function as a high-affinity terminal oxidase in N. europaea and other AOB.

Sedlacek C, Giguere A, Dobie M, Mellbye B, Ferrell R, Woebken D, Sayavedra-Soto L, Bottomley P, Daims H, Wagner M, and Pjevac P
2019 - mSystems, in press

Berry-enriched diet in salt-sensitive hypertensive rats: metabolic fate of (poly)phenols and the role of gut microbiota.

Diets rich in (poly)phenols are associated with a reduced reduction in the incidence of cardiovascular disorders. While the absorption and metabolism of (poly)phenols has been described, it is not clear how their metabolic fate is affected under pathological conditions. This study evaluated the metabolic fate of berry (poly)phenols in an in vivo model of hypertension as well as the associated microbiota response. Dahl salt-sensitive rats were fed either a low-salt diet (0.26% NaCl) or a high-salt diet (8% NaCl), with or without a berry mixture (blueberries, blackberries, raspberries, Portuguese crowberry and strawberry tree fruit) for 9 weeks. The salt-enriched diet promoted an increase in the urinary excretion of berry (poly)phenol metabolites, while the abundance of these metabolites decreased in faeces, as revealed by UPLC-MS/MS. Moreover, salt and berries modulated gut microbiota composition as demonstrated by 16S rRNA analysis. Some changes in the microbiota composition were associated with the high-salt diet and revealed an expansion of the families and . However, this effect was mitigated by the dietary supplementation with berries. Alterations in the metabolic fate of (poly)phenols occur in parallel with the modulation of gut microbiota in hypertensive rats. Thus, beneficial effects of (poly)phenols could be related with these interlinked modifications, between metabolites and microbiota environments.

Gomes A, Oudot C, Macià A, Foito A, Carregosa D, Stewart D, Van de Wiele T, Berry D, Motilva MJ, Brenner C, Dos Santos CN
2019 - Nutrients, 11: in press

Lecture series

Metals and microbial respiration: the molecular basis of bioelectricity production and greenhouse gas destruction

David Richardson
University of East Anglia, Norwich Research Park, Norwich, UK
23.01.2020
12:00 h
Lecture Hall HS2, UZA1, Althanstrasse 14, 1090 Wien