Publications

Publications in peer reviewed journals

13 Publications found
  • Molecular insights into symbiosis-mapping sterols in a marine flatworm-algae-system using high spatial resolution MALDI-2-MS imaging with ion mobility separation.

    Bien T, Hambleton EA, Dreisewerd K, Soltwisch J
    2021 - Anal Bioanal Chem, 10: 2767-2777

    Abstract: 

    Waminoa sp. acoel flatworms hosting Symbiodiniaceae and the related Amphidinium dinoflagellate algae are an interesting model system for symbiosis in marine environments. While the host provides a microhabitat and safety, the algae power the system by photosynthesis and supply the worm with nutrients. Among these nutrients are sterols, including cholesterol and numerous phytosterols. While it is widely accepted that these compounds are produced by the symbiotic dinoflagellates, their transfer to and fate within the sterol-auxotrophic Waminoa worm host as well as their role in its metabolism are unknown. Here we used matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging combined with laser-induced post-ionization and trapped ion mobility spectrometry (MALDI-2-TIMS-MSI) to map the spatial distribution of over 30 different sterol species in sections of the symbiotic system. The use of laser post-ionization crucially increased ion yields and allowed the recording of images with a pixel size of 5 μm. Trapped ion mobility spectrometry (TIMS) helped with the tentative assignment of over 30 sterol species. Correlation with anatomical features of the worm, revealed by host-derived phospholipid signals, and the location of the dinoflagellates, revealed by chlorophyll a signal, disclosed peculiar differences in the distribution of different sterol species (e.g. of cholesterol versus stigmasterol) within the receiving host. These findings point to sterol species-specific roles in the metabolism of Waminoa beyond a mere source of energy. They also underline the value of the MALDI-2-TIMS-MSI method to future research in the spatially resolved analysis of sterols.

  • Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution.

    Leray M, Wilkins LGE, Apprill A, Bik HM, Clever F, Connolly SR, De León ME, Duffy JE, Ezzat L, Gignoux-Wolfsohn S, Herre EA, Kaye JZ, Kline DI, Kueneman JG, McCormick MK, McMillan WO, O'Dea A, Pereira TJ, Petersen JM, Petticord DF, Torchin ME, Vega Thurber R, Videvall E, Wcislo WT, Yuen B, Eisen JA
    2021 - PLoS Biol, 8: e3001322

    Abstract: 

    Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.

  • Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups.

    Osvatic JT, Wilkins LGE, Leibrecht L, Leray M, Zauner S, Polzin J, Camacho Y, Gros O, van Gils JA, Eisen JA, Petersen JM, Yuen B
    2021 - Proc Natl Acad Sci U S A, 29: in press

    Abstract: 

    In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Thiodiazotropha taylori, associated with multiple lucinid host species. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis.

  • A novel SAR324 bacterium associated with abalone, Haliotis diversicolor

    Huang Z, Petersen JM, You W, Shao Z
    2021 - Aquaculture Research, 52: 1945-1953

    Abstract: 

    Bacteria affiliated to the Deltaproteobacteria dominate intestinal microbial communities in the abalone, Haliotis diversicolor, and may colonize the host's digestive gland, raising the possibility that they contribute to digestion of macroalgae. However, the phylogenetic, and genomic and metabolic characteristics of these Deltaproteobacteria, and the nature of their relationship to abalone host remain elusive. Here, we examined the intestinal microbial composition of H. diversicolor using high-throughput sequencing and described the genomic characteristics of the Deltaproteobacteria phylotype using genome-centric metagenomics. High-throughput sequencing confirmed that one Deltaproteobacteria phylotype was predominant in intestinal microbiota of H. diversicolor. Phylogeny analysis based on full-length 16S rRNA gene allocated this bacterium to a distinct and unique cluster within SAR324. It possessed a genome of at least 1.59 Mb with 35.15 mol% GC content, much smaller than other sequenced free-living SAR324 bacteria. According to genome annotation and metabolic reconstruction, ATP binding cassette transporters for sugars and carbohydrate metabolism pathways indicated heterotrophic potential. Interestingly, it encoded polysaccharide lyases, which, if expressed, could help the host to digest its macroalgae diet. In contrast to the known SAR324, no sulphur oxidation or carbon fixation pathways were predicted. We propose that this is a unique and specific SAR324 bacterium in symbiosis with Haliotis.

  • Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage.

    Seki D, Mayer M, Hausmann B, Pjevac P, Giordano V, Goeral K, Unterasinger L, Klebermaß-Schrehof K, De Paepe K, Van de Wiele T, Spittler A, Kasprian G, Warth B, Berger A, Berry D, Wisgrill L
    2021 - Cell Host Microbe, 10: 1558-1572.e6

    Abstract: 

    Premature infants are at substantial risk for suffering from perinatal white matter injury. Though the gut microbiota has been implicated in early-life development, a detailed understanding of the gut-microbiota-immune-brain axis in premature neonates is lacking. Here, we profiled the gut microbiota, immunological, and neurophysiological development of 60 extremely premature infants, which received standard hospital care including antibiotics and probiotics. We found that maturation of electrocortical activity is suppressed in infants with severe brain damage. This is accompanied by elevated γδ T cell levels and increased T cell secretion of vascular endothelial growth factor and reduced secretion of neuroprotectants. Notably, Klebsiella overgrowth in the gut is highly predictive for brain damage and is associated with a pro-inflammatory immunological tone. These results suggest that aberrant development of the gut-microbiota-immune-brain axis may drive or exacerbate brain injury in extremely premature neonates and represents a promising target for novel intervention strategies.

  • Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria

    Gottshall EY, Bryson SJ, Cogert KI, Landreau M, Sedlacek CJ, Stahl DA, Daims H, Winkler M
    2021 - Water Res, 202: 117426

    Abstract: 

    The discovery of anaerobic ammonia-oxidizing bacteria (Anammox) and, more recently, aerobic bacteria common in many natural and engineered systems that oxidize ammonia completely to nitrate (Comammox) have significantly altered our understanding of the global nitrogen cycle. A high affinity for ammonia (Km(app),NH3 ≈ 63nM) and oxygen place Comammox Nitrospira inopinata, the first described isolate, in the same trophic category as organisms such as some ammonia-oxidizing archaea. However, N. inopinata has a relatively low affinity for nitrite (Km,NO2 ≈ 449.2μM) suggesting it would be less competitive for nitrite than other nitrite-consuming aerobes and anaerobes. We examined the ecological relevance of the disparate substrate affinities by coupling it with the Anammox bacterium Candidatus Brocadia anammoxidans. Synthetic communities of the two were established in hydrogel granules in which Comammox grew in the aerobic outer layer to provide Anammox with nitrite in the inner anoxic core to form dinitrogen gas. This spatial organization was confirmed with FISH imaging, supporting a mutualistic or commensal relationship. The functional significance of interspecies spatial organization was informed by the hydrogel encapsulation format, broadening our limited understanding of the interplay between these two species. The resulting low nitrate formation and the competitiveness of Comammox over other aerobic ammonia- and nitrite-oxidizers sets this ecological cooperation apart and points to potential biotechnological applications. Since nitrate is an undesirable product of wastewater treatment effluents, the Comammox-Anammox symbiosis may be of economic and ecological importance to reduce nitrogen contamination of receiving waters.

  • Pangenomics reveals alternative environmental lifestyles among chlamydiae

    Köstlbacher S, Collingro A, Halter T, Schulz F, Jungbluth SP, Horn M
    2021 - Nature Commun, 12: 4021

    Abstract: 

    Chlamydiae are highly successful strictly intracellular bacteria associated with diverse eukaryotic hosts. Here we analysed metagenome-assembled genomes of the “Genomes from Earth’s Microbiomes” initiative from diverse environmental samples, which almost double the known phylogenetic diversity of the phylum and facilitate a highly resolved view at the chlamydial pangenome. Chlamydiae are defined by a relatively large core genome indicative of an intracellular lifestyle, and a highly dynamic accessory genome of environmental lineages. We observe chlamydial lineages that encode enzymes of the reductive tricarboxylic acid cycle and for light-driven ATP synthesis. We show a widespread potential for anaerobic energy generation through pyruvate fermentation or the arginine deiminase pathway, and we add lineages capable of molecular hydrogen production. Genome-informed analysis of environmental distribution revealed lineage-specific niches and a high abundance of chlamydiae in some habitats. Together, our data provide an extended perspective of the variability of chlamydial biology and the ecology of this phylum of intracellular microbes.

  • Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica.

    Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, Gabriel R, Reipert S, Weidinger M, Clode P, Wagner M, Woebken D, Richter A, Kaiser C
    2021 - New Phytol, 6: 2457-2474

    Abstract: 

    Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a CO atmosphere. We analysed the short-term distribution of C and N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more C to root parts that received more N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of C and N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.

  • Functional iron-deficiency in women with allergic rhinitis is associated with symptoms after nasal provocation and lack of iron-sequestering microbes.

    Petje LM, Jensen SA, Szikora S, Sulzbacher M, Bartosik T, Pjevac P, Hausmann B, Hufnagl K, Untersmayr E, Fischer L, Vyskocil E, Eckl-Dorna J, Jensen-Jarolim E, Hofstetter G, Afify SM, Krenn CG, Roth GA, Rivelles E, Hann S, Roth-Walter F
    2021 - Allergy, 9: 2882-2886
  • Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gut.

    Hanson BT, Kits KD, Löffler J, Burrichter AG, Fiedler A, Denger K, Frommeyer B, Herbold CW, Rattei T, Karcher N, Segata N, Schleheck D, Loy A
    2021 - ISME J, 15: 2779–2791

    Abstract: 

    Responses of the microbiota to diet are highly personalized but mechanistically not well understood because many metabolic capabilities and interactions of human gut microorganisms are unknown. Here we show that sulfoquinovose (SQ), a sulfonated monosaccharide omnipresent in green vegetables, is a selective yet relevant substrate for few but ubiquitous bacteria in the human gut. In human feces and in defined co-culture, Eubacterium rectale and Bilophila wadsworthia used recently identified pathways to cooperatively catabolize SQ with 2,3-dihydroxypropane-1-sulfonate as a transient intermediate to hydrogen sulfide (HS), a key intestinal metabolite with disparate effects on host health. SQ-degradation capability is encoded in almost half of E. rectale genomes but otherwise sparsely distributed among microbial species in the human intestine. However, re-analysis of fecal metatranscriptome datasets of four human cohorts showed that SQ degradation (mostly from E. rectale and Faecalibacterium prausnitzii) and HS production (mostly from B. wadsworthia) pathways were expressed abundantly across various health states, demonstrating that these microbial functions are core attributes of the human gut. The discovery of green-diet-derived SQ as an exclusive microbial nutrient and an additional source of HS in the human gut highlights the role of individual dietary compounds and organosulfur metabolism on microbial activity and has implications for precision editing of the gut microbiota by dietary and prebiotic interventions.

  • Polyphenol Exposure, Metabolism, and Analysis: A Global Exposomics Perspective.

    Oesterle I, Braun D, Berry D, Wisgrill L, Rompel A, Warth B
    2021 - Annu Rev Food Sci Technol, 461-484

    Abstract: 

    Polyphenols are generally known for their health benefits and estimating actual exposure levels in health-related studies can be improved by human biomonitoring. Here, the application of newly available exposomic and metabolomic technology, notably high-resolution mass spectrometry, in the context of polyphenols and their biotransformation products, is reviewed. Comprehensive workflows for investigating these important bioactives in biological fluids or microbiome-related experiments are scarce. Consequently, this new era of nontargeted analysis and omic-scale exposure assessment offers a unique chance for better assessing exposure to, as well as metabolism of, polyphenols. In clinical and nutritional trials, polyphenols can be investigated simultaneously with the plethora of other chemicals to which we are exposed, i.e., the exposome, which may interact abundantly and modulate bioactivity. This research direction aims at ultimately eluting into atrue systems biology/toxicology evaluation of health effects associated with polyphenol exposure, especially during early life, to unravel their potential for preventing chronic diseases.

  • Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes.

    Rodrigues RR, Gurung M, Li Z, García-Jaramillo M, Greer R, Gaulke C, Bauchinger F, You H, Pederson JW, Vasquez-Perez S, White KD, Frink B, Philmus B, Jump DB, Trinchieri G, Berry D, Sharpton TJ, Dzutsev A, Morgun A, Shulzhenko N
    2021 - Nat Commun, 1: 101

    Abstract: 

    Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.

  • Coevolving plasmids drive gene flow and genome plasticity in host-associated intracellular bacteria

    Köstlbacher S, Collingro A, Halter T, Domman D, Horn M
    2021 - Curr Biol, 2: 346-357.e3

    Abstract: 

    Plasmids are important in microbial evolution and adaptation to new environments. Yet, carrying a plasmid can be costly, and long-term association of plasmids with their hosts is poorly understood. Here, we provide evidence that the Chlamydiae, a phylum of strictly host-associated intracellular bacteria, have coevolved with their plasmids since their last common ancestor. Current chlamydial plasmids are amalgamations of at least one ancestral plasmid and a bacteriophage. We show that the majority of plasmid genes are also found on chromosomes of extant chlamydiae. The most conserved plasmid gene families are predominantly vertically inherited, while accessory plasmid gene families show significantly increased mobility. We reconstructed the evolutionary history of plasmid gene content of an entire bacterial phylum over a period of around one billion years. Frequent horizontal gene transfer and chromosomal integration events illustrate the pronounced impact of coevolution with these extrachromosomal elements on bacterial genome dynamics in host-dependent microbes.

Book chapters and other publications

1 Publication found
  • A genomic catalog of Earth's microbiomes

    Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D, Paez-Espino D, Chen IM, Huntemann M, Palaniappan K, Ladau J, Mukherjee S, Reddy TBK, Nielsen T, Kirton E, Faria JP, Edirisinghe JN, Henry CS, Jungbluth SP, Chivian D, Dehal P, Wood-Charlson EM, Arkin AP, Tringe SG, Visel A, IMG/M Data Consortium, Woyke T, Mouncey NJ, Ivanova NN, Kyrpides NC, Eloe-Fadrosh EA
    2021 - Nat Biotechnol, 39: 499-509

    Abstract: 

    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.